Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus.
نویسندگان
چکیده
Adaptation in a vestibular organ, the bullfrog's sacculus, was studied in vivo and in vitro. In the in vivo experiments, the discharge of primary saccular neurons and the extracellular response of saccular hair cells were recorded during steps of linear acceleration. The saccular neurons responded at the onset of the acceleration steps, then adapted fully within 10-50 msec. The extracellular (microphonic) response of the hair cells adapted with a similar time course, indicating that the primary sources of the neural adaptation are peripheral to the afferent synapse--in the hair cell, its mechanical inputs, or both. Evidence for hair cell adaptation was provided by 2 in vitro preparations: after excising the sacculus and removing the accessory structures, we recorded either the extracellular hair cell response to displacement of the otolithic membrane or the intracellular hair cell response to hair bundle displacement. In both cases the response to a step stimulus adapted. The adaptation involved a shift in the displacement-response curve along the displacement axis, so that the cell's operating point was reset toward the static position of its hair bundle. This displacement shift occurred in response to both depolarizing and hyperpolarizing stimuli. Its time course varied among cells, from tens to hundreds of milliseconds, and also varied with the concentration of Ca2+ bathing the apical surfaces of the hair cells. Voltage-clamp experiments suggested that the displacement shift does not depend simply on ion entry through the hair cell's transduction channels and can occur at a fixed membrane potential. The possible role of the displacement-shift process in the function of the frog's sacculus as a very sensitive vibration detector is discussed.
منابع مشابه
Efferent Control of the Electrical and Mechanical Properties of Hair Cells in the Bullfrog's Sacculus
BACKGROUND Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown. METHODOLOGY AND PRINCIPAL FINDINGS We e...
متن کاملCalmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus.
Deflection of the mechanically sensitive hair bundle atop a hair cell opens transduction channels, some of which subsequently reclose during a Ca2+-dependent adaptation process. Myosin I in the hair bundle is thought to mediate this adaptation; in the bullfrog's hair cell, the relevant isozyme may be the 119-kDa amphibian myosin I beta. Because this molecule resembles other forms of myosin I, w...
متن کاملDirect mechanical stimulation of tip links in hair cells through DNA tethers
Mechanoelectrical transduction by hair cells commences with hair-bundle deflection, which is postulated to tense filamentous tip links connected to transduction channels. Because direct mechanical stimulation of tip links has not been experimentally possible, this hypothesis has not been tested. We have engineered DNA tethers that link superparamagnetic beads to tip links and exert mechanical f...
متن کاملRapid, active hair bundle movements in hair cells from the bullfrog's sacculus.
Hair bundles, the mechanically sensitive organelles of hair cells in the auditory and vestibular systems, are elastic structures that are deflected by sound or acceleration. To examine rapid mechanical events associated with mechanoelectrical transduction, we stimulated individual hair bundles with flexible glass fibers and measured their responses with a temporal resolution of 400 microsec. Wh...
متن کاملSpontaneous oscillation by hair bundles of the bullfrog's sacculus.
One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair bundle motility probably constitutes the active process of nonmammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacousti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 7 9 شماره
صفحات -
تاریخ انتشار 1987